Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

The iron phosphate $\mathrm{NaZnFe}_{2}\left(\mathrm{PO}_{4}\right)_{3}$

Mourad Hidouri,* Besma Lajmi and Mongi Ben Amara

Département de Chimie, Faculté des Sciences, 5000 Monastir, Tunisia
Correspondence e-mail: mourad_hidouri@yahoo.fr

Received 10 June 2002
Accepted 28 August 2002
Online 11 October 2002
Crystals of sodium zinc diiron(III) triphosphate, $\mathrm{NaZnFe}_{2^{-}}$ $\left(\mathrm{PO}_{4}\right)_{3}$, have been synthesized and structurally characterized by single-crystal X-ray diffraction. The compound features a new structural type built up from ZnO_{6} octahedra, FeO_{6} octahedra and FeO_{4} tetrahedra, linked together via the corners and edges of PO_{4} tetrahedra to form a threedimensional framework, with tunnels running along [100]. Within these tunnels, Na^{+}cations occupy a highly distorted cubic site.

Comment

The investigation of iron phosphates over the past two decades has led to the synthesis and characterization of numerous compounds with a variety of network structures. Most of these compounds belong to the binary $A_{3} \mathrm{PO}_{4}-\mathrm{FePO}_{4}$ system, where A is a monovalent cation. By contrast, the bibliographic data reveal only a small number of ternary iron phosphates of the $A_{3} \mathrm{PO}_{4}-M_{3}\left(\mathrm{PO}_{4}\right)_{2}-\mathrm{FePO}_{4}$ system, where A and M are monovalent and divalent cations, respectively, namely, $\mathrm{Na}_{3} \mathrm{Ca}_{18} \mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{14}$ (Strunkova et al., 1997), $\mathrm{Na}_{2} \mathrm{Fe}_{3^{-}}$ $\left(\mathrm{PO}_{4}\right)_{3}$ (Yakubovich et al., 1977), $\mathrm{NaFe}_{3}\left(\mathrm{PO}_{4}\right)_{3}$ (Corbin et al., 1986), $\mathrm{Na}_{7} \mathrm{Fe}_{4}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{Lii}, 1996), \mathrm{NaFe}_{3.67}\left(\mathrm{PO}_{4}\right)_{3}$ (Korznski et al., 1998), $\mathrm{KBaFe}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ (Battle et al., 1986) and $\mathrm{Cu}_{1.35^{-}}$ $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{3}$ (Warner et al., 1993).

As part of our study of the crystal chemistry of ternary iron monophosphates belonging to the $\mathrm{Na}_{3} \mathrm{PO}_{4}-M_{3}\left(\mathrm{PO}_{4}\right)_{2}-\mathrm{FePO}_{4}$ system, we report here the synthesis and structural characterization of $\mathrm{NaZnFe}_{2}\left(\mathrm{PO}_{4}\right)_{3}$. This compound features a new type of structure (Fig. 1), comprising $\mathrm{FeO}_{6}, \mathrm{FeO}_{4}$ and ZnO_{6} polyhedra connected together via the corners and edges of three crystallographically distinct PO_{4} tetrahedra. The resulting complex three-dimensional framework contains tunnels running along the [100] direction, in which the Na^{+} cations reside.

The oxygen environment around the Zn atoms in NaZn $\mathrm{Fe}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ approximates to a highly distorted octahedron, as indicated by the $\mathrm{Zn}-\mathrm{O}$ bond lengths and $\mathrm{O}-\mathrm{Zn}-\mathrm{O}$ bond angles (Table 1). The ZnO_{6} octahedron shares two corners, atoms O 11 and O 14 , with two P_{4} tetrahedra, one edge, $\mathrm{O} 23-\mathrm{O} 24$, with one $\mathrm{P}_{2} \mathrm{O}_{4}$ tetrahedron, and the remaining two corners, atoms O31 and O34, with two P_{3} tetrahedra.

Figure 1
The structure of $\mathrm{NaZnFe}_{2}\left(\mathrm{PO}_{4}\right)_{3}$, viewed along the a direction. The ZnO_{6} and PO_{4} polyhedra are illustrated by lined and cross-hatched patterns,
 cations are represented by solid circles.

Figure 2
The coordination environment of the Na^{+}cations. Displacement ellipsoids are drawn at the 50% probability level.

The Fe 1 atoms also exhibit a distorted octahedral environment. The ${\mathrm{Fe} 1 \mathrm{O}_{6} \text { octahedron shares one edge, O13-O14, }}_{\text {O }}$ with one $\mathrm{P}_{1} \mathrm{O}_{4}$ tetrahedron, and three corners, atoms O 21 , O 23 and O 24 , with three $\mathrm{P}_{2} \mathrm{O}_{4}$ tetrahedra. The sixth vertex, atom O 34 , is shared with the $\mathrm{P}_{3} \mathrm{O}_{4}$ group.

The Fe 2 atoms exhibit an unusual tetrahedral environment. The corresponding bond distances are close to those observed in FePO_{4} (Calvo, 1975). The $\mathrm{Fe} 2 \mathrm{O}_{4}$ tetrahedron shares the corners O 12 and O 22 with $\mathrm{P1O}_{4}$ and $\mathrm{P}_{2} \mathrm{O}_{4}$ tetrahedra, respectively, and the other two corners, atoms O32 and O33, with two $\mathrm{P}_{3} \mathrm{O}_{4}$ groups.
Na^{+}cations are located within tunnels running along [100]. Their environment (Fig. 2) was determined assuming $\mathrm{Na}-\mathrm{O}$ distances of less than $3.0 \AA$. They then have an irregular eight-coordinate site, with $\mathrm{Na}-\mathrm{O}$ bond distances similar to those frequently observed for Na atoms with coordination number 8 .

Experimental

Crystals of $\mathrm{NaZnFe}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ were prepared from a stoichiometric mixture of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}, \mathrm{ZnO}, \mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$. The mixture was initially heated for 12 h at 873 K to evacuate the decomposition products ($\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$, etc.), then melted for 1 h at 1253 K and finally cooled to room temperature at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$.

inorganic compounds

Elemental analysis of crystal samples via electron microprobe analysis indicated the presence of $\mathrm{Zn}, \mathrm{Fe}, \mathrm{P}$ and Na in the atomic ratio 1:2:3:1.

Crystal data

```
\(\mathrm{NaZnFe}{ }_{2}\left(\mathrm{PO}_{4}\right)_{3}\)
\(M_{r}=484.97\)
Orthorhombic, \(P 2_{1} 2_{1} 2_{1}\)
\(a=5.1240\) (10) \(\AA\)
\(b=12.213\) (5) \(\AA\)
\(c=15.072\) (9) \(\AA\)
\(V=943.2(7) \AA^{3}\)
\(Z=4\)
\(D_{x}=3.415 \mathrm{Mg} \mathrm{m}^{-3}\)
```


Data collection

Enraf-Nonius CAD-4
\quad diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
\quad (North et al., 1968)
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=27^{\circ}$
$h=0 \rightarrow 6$
$k=0 \rightarrow 15$
$l=-1 \rightarrow 19$
2 standard reflections frequency: 120 min intensity decay: none

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Zn}-\mathrm{O} 31$	1.908 (5)	$\mathrm{Na}-\mathrm{O} 32^{\text {viii }}$	2.476 (6)
$\mathrm{Zn}-\mathrm{O} 11$	2.006 (5)	$\mathrm{Na}-\mathrm{O} 13{ }^{\text {iv }}$	2.497 (6)
$\mathrm{Zn}-\mathrm{O} 34^{\text {i }}$	2.024 (5)	$\mathrm{Na}-\mathrm{O} 24{ }^{\text {ix }}$	2.705 (6)
$\mathrm{Zn}-\mathrm{O} 24{ }^{\text {ii }}$	2.181 (5)	$\mathrm{Na}-\mathrm{O} 34{ }^{\text {vii }}$	2.705 (6)
$\mathrm{Zn}-\mathrm{O} 14^{\text {ii }}$	2.279 (5)	$\mathrm{Na}-\mathrm{O} 14{ }^{\text {vii }}$	2.922 (6)
$\mathrm{Zn}-\mathrm{O} 23{ }^{\text {ii }}$	2.369 (5)	$\mathrm{Na}-\mathrm{O} 22^{\text {ix }}$	2.987 (6)
$\mathrm{Fe} 1-\mathrm{O} 21{ }^{\text {iii }}$	1.882 (5)	P1-O11	1.521 (5)
Fe1-O13	1.942 (5)	P1-O12	1.544 (5)
Fe1-O24	1.991 (5)	P1-O13	1.549 (5)
Fe1-O14 ${ }^{\text {i }}$	2.026 (5)	P1-O14	1.552 (5)
$\mathrm{Fe} 1-\mathrm{O} 23^{\text {i }}$	2.054 (5)	P2-O21	1.511 (5)
$\mathrm{Fe} 1-\mathrm{O} 34^{\text {iv }}$	2.340 (5)	$\mathrm{P} 2-\mathrm{O} 22$	1.541 (5)
$\mathrm{Fe} 2-\mathrm{O} 22^{\text {v }}$	1.852 (5)	$\mathrm{P} 2-\mathrm{O} 23$	1.543 (5)
$\mathrm{Fe} 2-\mathrm{O} 33^{\text {vi }}$	1.851 (5)	$\mathrm{P} 2-\mathrm{O} 24$	1.563 (5)
$\mathrm{Fe} 2-\mathrm{O} 12{ }^{\text {vi }}$	1.872 (5)	P3-O31	1.522 (5)
$\mathrm{Fe} 2-\mathrm{O} 3{ }^{\text {i }}$	1.881 (5)	P3-O32	1.544 (5)
$\mathrm{Na}-\mathrm{O} 11^{\text {vii }}$	2.401 (7)	P3-O33	1.545 (5)
$\mathrm{Na}-\mathrm{O} 23$	2.444 (6)	P3-O34	1.559 (5)
$\mathrm{O} 31-\mathrm{Zn}-\mathrm{O} 11$	100.0 (2)	$\mathrm{O} 34^{\mathrm{i}}-\mathrm{Zn}-\mathrm{O} 14^{\text {ii }}$	77.84 (19)
$\mathrm{O} 31-\mathrm{Zn}-\mathrm{O} 34^{\text {i }}$	109.1 (2)	$\mathrm{O} 24^{\mathrm{ii}}-\mathrm{Zn}-\mathrm{O} 14^{\text {ii }}$	79.40 (18)
$\mathrm{O} 11-\mathrm{Zn}-\mathrm{O} 34^{\text {i }}$	109.1 (2)	$\mathrm{O} 31-\mathrm{Zn}-\mathrm{O} 23{ }^{\text {ii }}$	168.10 (19)
$\mathrm{O} 31-\mathrm{Zn}-\mathrm{O} 24{ }^{\text {ii }}$	109.0 (2)	$\mathrm{O} 11-\mathrm{Zn}-\mathrm{O} 23{ }^{\text {ii }}$	89.45 (19)
$\mathrm{O} 11-\mathrm{Zn}-\mathrm{O} 24{ }^{\text {ii }}$	82.5 (2)	$\mathrm{O} 34^{\mathrm{i}}-\mathrm{Zn}-\mathrm{O} 23^{\text {ii }}$	73.97 (19)
$\mathrm{O} 34^{\text {i }}-\mathrm{Zn}-\mathrm{O} 24^{\text {ii }}$	137.1 (2)	$\mathrm{O} 24^{\text {ii }}-\mathrm{Zn}-\mathrm{O} 23{ }^{\text {ii }}$	64.82 (17)
$\mathrm{O} 31-\mathrm{Zn}-\mathrm{O} 14^{\text {ii }}$	96.1 (2)	$\mathrm{O} 14^{\mathrm{ii}}-\mathrm{Zn}-\mathrm{O} 23^{\text {ii }}$	73.03 (17)
$\mathrm{O} 11-\mathrm{Zn}-\mathrm{O} 14^{\text {ii }}$	158.9 (2)		

Symmetry codes: (i) $1+x, y, z$; (ii) $-x, y-\frac{1}{2}, \frac{3}{2}-z$; (iii) $\frac{1}{2}+x, \frac{3}{2}-y, 1-z$; (iv) $-x, \frac{1}{2}+y, \frac{3}{2}-z ;$ (v) $x, y-1, z$; (vi) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z ;$ (vii) $-1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (viii) $x, 1+y, z ;$ (ix) $x-1, y, z$.

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\max }=0.006$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$\Delta \rho_{\max }=0.64 \mathrm{e}^{\AA^{-3}}$
$w R\left(F^{2}\right)=0.078$
$S=1.24$
$\Delta \rho_{\text {min }}=-1.05$ e \AA^{-3}
1293 reflections
173 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0392 P)^{2}\right.$
$+0.4314 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.0038 (8)
Absolute structure: Flack (1983), 70 Friedel pairs
Flack parameter $=0.02(3)$

The Zn and Fe atoms were located by direct methods, and the remaining atoms were found by successive difference Fourier maps.
Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

The authors thank Professor A. Driss from F. S. Tunis for the X-ray diffraction measurements.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1022). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Battle, P. D., Cheetham, A. K., Harrison, W. T. A. \& Long, G. J. (1986). J. Solid State Chem. 62, 16-25.
Brandenburg, K. (1998). DIAMOND. Version 2.0. University of Bonn, Germany.
Calvo, C. (1975). Can. J. Chem. 53, 2064-2067.
Corbin, R. D., Whiteny, J. F., Fluz, W. C., Stucky, G. D., Edly, M. M. \& Cheetham, A. K. (1986). Inorg. Chem. 25, 2279-2280.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Korznski, M. B., Shimek, G. L., Kolis, J. W. \& Long, G. J. (1998). J. Solid State Chem. 139, 152-160.
Lii, K.-H. (1996). J. Chem. Soc. 96, 819-822.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany
Strunkova, T. V., Morozov, V. A., Kasanov, S. S., Pokhlok, K. V., Zhdanova, A. N. \& Lazoryak, B. I. (1997). Kristallographia, 42, 64-67. (In Russian.)

Warner, T. E., Milius, W. \& Mayer, J. (1993). J. Solid State Chem. 106, 301-309. Yakubovich, O. V., Simonov, M. A., Ergov, T. \& Belov, N. V. (1977). Dokl. Acad. Nauk SSSR, 236, 1123-1126. (In Russian.)

