Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

The iron phosphate NaZnFe₂(PO₄)₃

Mourad Hidouri,* Besma Lajmi and Mongi Ben Amara

Département de Chimie, Faculté des Sciences, 5000 Monastir, Tunisia Correspondence e-mail: mourad_hidouri@yahoo.fr

Received 10 June 2002 Accepted 28 August 2002 Online 11 October 2002

Crystals of sodium zinc diiron(III) triphosphate, NaZnFe₂-(PO₄)₃, have been synthesized and structurally characterized by single-crystal X-ray diffraction. The compound features a new structural type built up from ZnO₆ octahedra, FeO₆ octahedra and FeO₄ tetrahedra, linked together *via* the corners and edges of PO₄ tetrahedra to form a threedimensional framework, with tunnels running along [100]. Within these tunnels, Na⁺ cations occupy a highly distorted cubic site.

Comment

The investigation of iron phosphates over the past two decades has led to the synthesis and characterization of numerous compounds with a variety of network structures. Most of these compounds belong to the binary A_3PO_4 -FePO₄ system, where *A* is a monovalent cation. By contrast, the bibliographic data reveal only a small number of ternary iron phosphates of the A_3PO_4 - $M_3(PO_4)_2$ -FePO₄ system, where *A* and *M* are monovalent and divalent cations, respectively, namely, Na₃Ca₁₈Fe(PO₄)₁₄ (Strunkova *et al.*, 1997), Na₂Fe₃-(PO₄)₃ (Yakubovich *et al.*, 1977), NaFe₃(PO₄)₃ (Corbin *et al.*, 1986), Na₇Fe₄(PO₄)₆ (Lii, 1996), NaFe_{3.67}(PO₄)₃ (Korznski *et al.*, 1998), KBaFe₂(PO₄)₃ (Battle *et al.*, 1986) and Cu_{1.35}-Fe₃(PO₄)₃ (Warner *et al.*, 1993).

As part of our study of the crystal chemistry of ternary iron monophosphates belonging to the Na₃PO₄– M_3 (PO₄)₂–FePO₄ system, we report here the synthesis and structural characterization of NaZnFe₂(PO₄)₃. This compound features a new type of structure (Fig. 1), comprising FeO₆, FeO₄ and ZnO₆ polyhedra connected together *via* the corners and edges of three crystallographically distinct PO₄ tetrahedra. The resulting complex three-dimensional framework contains tunnels running along the [100] direction, in which the Na⁺ cations reside.

The oxygen environment around the Zn atoms in NaZn-Fe₂(PO₄)₃ approximates to a highly distorted octahedron, as indicated by the Zn-O bond lengths and O-Zn-O bond angles (Table 1). The ZnO₆ octahedron shares two corners, atoms O11 and O14, with two P1O₄ tetrahedra, one edge, O23-O24, with one P2O₄ tetrahedron, and the remaining two corners, atoms O31 and O34, with two P3O₄ tetrahedra.

Figure 1

The structure of NaZnFe₂(PO₄)₃, viewed along the *a* direction. The ZnO₆ and PO₄ polyhedra are illustrated by lined and cross-hatched patterns, respectively. The remaining polyhedra are Fe1O₆ and Fe2O₄. The Na⁺ cations are represented by solid circles.

The coordination environment of the Na^+ cations. Displacement ellipsoids are drawn at the 50% probability level.

The Fe1 atoms also exhibit a distorted octahedral environment. The Fe1O₆ octahedron shares one edge, O13–O14, with one P1O₄ tetrahedron, and three corners, atoms O21, O23 and O24, with three P2O₄ tetrahedra. The sixth vertex, atom O34, is shared with the P3O₄ group.

The Fe2 atoms exhibit an unusual tetrahedral environment. The corresponding bond distances are close to those observed in FePO₄ (Calvo, 1975). The Fe2O₄ tetrahedron shares the corners O12 and O22 with P1O₄ and P2O₄ tetrahedra, respectively, and the other two corners, atoms O32 and O33, with two P3O₄ groups.

 Na^+ cations are located within tunnels running along [100]. Their environment (Fig. 2) was determined assuming Na-O distances of less than 3.0 Å. They then have an irregular eight-coordinate site, with Na-O bond distances similar to those frequently observed for Na atoms with coordination number 8.

Experimental

Crystals of NaZnFe₂(PO₄)₃ were prepared from a stoichiometric mixture of Fe(NO₃)₃·9H₂O, ZnO, NaH₂PO₄ and (NH₄)₂HPO₄. The mixture was initially heated for 12 h at 873 K to evacuate the decomposition products (H₂O, NH₃, *etc.*), then melted for 1 h at 1253 K and finally cooled to room temperature at a rate of 10 K h⁻¹.

Elemental analysis of crystal samples via electron microprobe analysis indicated the presence of Zn, Fe, P and Na in the atomic ratio 1:2:3:1.

Crystal data

$NaZnFe_2(PO_4)_3$	Mo $K\alpha$ radiation
$M_r = 484.97$	Cell parameters from 25
Orthorhombic, $P2_12_12_1$	reflections
$a = 5.1240 (10) \text{ Å}^{1}$	$\theta = 10 - 15^{\circ}$
b = 12.213(5)Å	$\mu = 6.18 \text{ mm}^{-1}$
c = 15.072 (9) Å	T = 293 (2) K
V = 943.2 (7) Å ³	Parallelepiped, brown
Z = 4	$0.22 \times 0.10 \times 0.06 \text{ mm}$
$D_x = 3.415 \text{ Mg m}^{-3}$	
Data collection	
Enraf–Nonius CAD-4	$R_{\rm int} = 0.020$
diffractometer	$\theta_{\rm max} = 27^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 6$
Absorption correction: ψ scan	$k = 0 \rightarrow 15$
(North et al., 1968)	$l = -1 \rightarrow 19$
$T_{\min} = 0.529, T_{\max} = 0.690$	2 standard reflections
1314 measured reflections	frequency: 120 min
1293 independent reflections	intensity decay: none
1184 reflections with $I > 2\sigma i(I)$	

Table 1

Selected geometric parameters (Å, °).

Zn-O31	1.908 (5)	Na-O32 ^{viii}	2.476 (6)
Zn-O11	2.006 (5)	Na-O13 ^{iv}	2.497 (6)
Zn-O34 ⁱ	2.024 (5)	Na-O24 ^{ix}	2.705 (6)
Zn-O24 ⁱⁱ	2.181 (5)	Na-O34 ^{vii}	2.705 (6)
Zn-O14 ⁱⁱ	2.279 (5)	Na-O14 ^{vii}	2.922 (6)
Zn-O23 ⁱⁱ	2.369 (5)	Na-O22 ^{ix}	2.987 (6)
Fe1-O21 ⁱⁱⁱ	1.882 (5)	P1-O11	1.521 (5)
Fe1-O13	1.942 (5)	P1-O12	1.544 (5)
Fe1-O24	1.991 (5)	P1-O13	1.549 (5)
Fe1-O14 ⁱ	2.026 (5)	P1-O14	1.552 (5)
Fe1-O23 ⁱ	2.054 (5)	P2-O21	1.511 (5)
Fe1-O34 ^{iv}	2.340 (5)	P2-O22	1.541 (5)
Fe2-O22 ^v	1.852 (5)	P2-O23	1.543 (5)
Fe2-O33vi	1.851 (5)	P2-O24	1.563 (5)
Fe2-O12 ^{vi}	1.872 (5)	P3-O31	1.522 (5)
Fe2-O32 ⁱ	1.881 (5)	P3-O32	1.544 (5)
Na-O11 ^{vii}	2.401 (7)	P3-O33	1.545 (5)
Na-O23	2.444 (6)	P3-O34	1.559 (5)
O31-Zn-O11	100.0 (2)	$O34^{i}$ -Zn- $O14^{ii}$	77.84 (19)
$O31-Zn-O34^{i}$	109.1 (2)	O24 ⁱⁱ -Zn-O14 ⁱⁱ	79.40 (18)
O11-Zn-O34 ⁱ	109.1 (2)	O31–Zn–O23 ⁱⁱ	168.10 (19)
O31-Zn-O24 ⁱⁱ	109.0 (2)	O11-Zn-O23 ⁱⁱ	89.45 (19)
O11-Zn-O24 ⁱⁱ	82.5 (2)	O34 ⁱ -Zn-O23 ⁱⁱ	73.97 (19)
$O34^{i}$ -Zn- $O24^{ii}$	137.1 (2)	O24 ⁱⁱ -Zn-O23 ⁱⁱ	64.82 (17)
O31-Zn-O14 ⁱⁱ	96.1 (2)	O14 ⁱⁱ -Zn-O23 ⁱⁱ	73.03 (17)
$O11-Zn-O14^{ii}$	158.9 (2)		

Symmetry codes: (i) 1 + x, y, z; (ii) $-x, y - \frac{1}{2}, \frac{3}{2} - z$; (iii) $\frac{1}{2} + x, \frac{3}{2} - y, 1 - z$; (iv) $-x, \frac{1}{2}+y, \frac{3}{2}-z;$ (v) x, y-1, z; (vi) $\frac{1}{2}+x, \frac{1}{2}-y, \overline{1}-z;$ (vii) $-\overline{1}-x, \frac{1}{2}+y, \frac{3}{2}-z;$ (viii) x, 1 + y, z; (ix) x - 1, y, z.

Refinement

25

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.006$
$R[F^2 > 2\sigma(F^2)] = 0.029$	$\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$
$vR(F^2) = 0.078$	$\Delta \rho_{\rm min} = -1.05 \mathrm{e} \mathrm{\AA}^{-3}$
S = 1.24	Extinction correction: SHELXL97
293 reflections	(Sheldrick, 1997)
73 parameters	Extinction coefficient: 0.0038 (8)
$w = 1/[\sigma^2(F_o^2) + (0.0392P)^2]$	Absolute structure: Flack (1983),
+ 0.4314P]	70 Friedel pairs
where $P = (F_o^2 + 2F_c^2)/3$	Flack parameter $= 0.02$ (3)

The Zn and Fe atoms were located by direct methods, and the remaining atoms were found by successive difference Fourier maps.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

The authors thank Professor A. Driss from F. S. Tunis for the X-ray diffraction measurements.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1022). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Battle, P. D., Cheetham, A. K., Harrison, W. T. A. & Long, G. J. (1986). J. Solid State Chem. 62, 16-25.
- Brandenburg, K. (1998). DIAMOND. Version 2.0. University of Bonn, Germany.
- Calvo, C. (1975). Can. J. Chem. 53, 2064-2067.
- Corbin, R. D., Whiteny, J. F., Fluz, W. C., Stucky, G. D., Edly, M. M. & Cheetham, A. K. (1986). Inorg. Chem. 25, 2279-2280.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Korznski, M. B., Shimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 152-160.
- Lii, K.-H. (1996). J. Chem. Soc. 96, 819-822.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Strunkova, T. V., Morozov, V. A., Kasanov, S. S., Pokhlok, K. V., Zhdanova, A. N. & Lazoryak, B. I. (1997). Kristallographia, 42, 64-67. (In Russian.)

Warner, T. E., Milius, W. & Mayer, J. (1993). J. Solid State Chem. 106, 301-309.

Yakubovich, O. V., Simonov, M. A., Ergov, T. & Belov, N. V. (1977). Dokl. Acad. Nauk SSSR, 236, 1123-1126. (In Russian.)